咨询热线

18641536633

当前位置:首页  >  技术文章  >  激光粒度仪基础知识

激光粒度仪基础知识

更新时间:2020-05-22      点击次数:1723
 1、为什麽散射/衍射激光粒度仪必须采用激光作光源
激光粒度仪是通过检测颗粒的散射谱来分析颗粒大小与分布的,因此能否获得清晰的散射谱至关重要,激光是一种准直性,单色性良好的光源,只有采用激光才能在散射/衍射粒度仪器中得到清晰的散射谱分布。用多种波长混合的光源不可能获得清晰的散射谱,只能获得多种散射谱的叠加,因此不能用于粒度仪。
在多种激光器中半导体激光与气体激光相比,气体光源波长短,线宽窄,单色性好,稳定性远优于半导体光源。因此微纳与大多数专业公司选用了气体激光器作为测量光源。
2、激光粒度仪与其他方法相比有什么优势?
激光粒度仪的光路实际是一个二维傅立叶变换器,因此具有傅立叶变换的许多特点:1、所有颗粒的散射信息是以光速并行传输到达光电探测器的,因此速度快;2、探测器可以做的非常窄大约几个微米,因此分辨率非常高;3、测试过程颗粒散射不会受到人为因素的干扰,因此测试重复性超群;4、根据傅立叶变换的平移不变性,颗粒在样品池中的运动速度不会影响频谱分布,因此适用于动态颗粒的测试,这是其他粒度测试方法所*的,这成为了颗粒在线测试理论依据。
3、激光粒度仪测量下限是多少?
激光粒度仪测量粒度的原理是MIE散射理论。 MIE散射理论用数学语言精确描述了折射率为n、吸收率为m的特定物质的,粒径为d球型颗粒,在波长为λ单色光照射下,散射光强度随散射角θ变化的空间分布函数,此函数也称为散射谱。根据MIE散射理论可以看出颗粒越大,前向散射越强而后向散射越弱;随着颗粒粒径的减小,前向散射迅速减弱而后向散射逐渐增强。附图示意表示了以波长为尺度大、中、小颗粒的散射谱。激光粒度仪正是通过设置在不同散射角度的光电探测器阵列,测试颗粒的散射谱,由此确定颗粒粒径的大小。这种散射谱对于特定颗粒在空间具有稳定分布的特征,因此称此种原理的仪器为静态激光粒度仪。
但是当颗粒粒径小到一定的程度dm,与另一种更小颗粒dm-δ相比,如果二种颗粒的散射谱非常相似,以至不能被光电探测器阵列所分辨,就认为达到了激光粒度仪的测量极限,此粒径dm就是激光粒度仪的测量下限。
此极限还与激光波长有关,研究表明红光635nm波长的激光测量极限为50纳米,而蓝光405nm波长的激光测量理论极限为20nm。
理论上,静态激光粒度仪欲分辨纳米级的颗粒至少需要二个条件:1、具有测量后向散射的光电探测器阵列,2、需要用波长更短的激光器。在可见光的范围内,20nm是静态激光粒度仪的理论测量下限。
丹东市皓宇科技有限公司
  • 联系人:衣俊
  • 地址:丹东市振安区同兴镇工业园兴园街9号
  • 邮箱:315506928@qq.com
  • 传真:0415-6199601
关注我们

欢迎您关注我们的微信公众号了解更多信息

扫一扫
关注我们
版权所有©2024丹东市皓宇科技有限公司All Rights Reserved    备案号:    sitemap.xml    总流量:188546
管理登陆    技术支持:化工仪器网